Esta entrada y la serie en su conjunto ha sido elaborada conjuntamente con Ana Isabel Prieto, Sergio Villanueva y Luis Búrdalo.
En el artículo anterior se comentó la dificultad ante la que los analistas de Threat Hunting se enfrentan como consecuencia de la alta cantidad de dominios que registra diariamente una organización. Esto dificulta el análisis y la localización de dominios potencialmente maliciosos, que pueden pasar desapercibido entre tanto tráfico. Por esta razón, en un intento de facilitar la tarea del analista, se propone la utilización de técnicas alternativas basadas en Machine Learning. Antes de presentar las diferentes pruebas realizadas, el artículo introduce los algoritmos que se van a utilizar para la detección de anomalías en los dominios.
Para empezar, es necesario comentar que tener una base de datos grande y variada es fundamental para que un modelo sea capaz de detectar dominios potencialmente maliciosos de forma fiable, ya que sus parámetros van a ser ajustados en un entorno que debe ser similar al real.
Sin embargo, existe una gran dificultad a la hora de identificar patrones en datos de alta dimensión, y más aún a la hora de representar dichos datos gráficamente y de expresarlos de forma que se destaquen sus similitudes y diferencias. Es aquí donde surge la necesidad de utilizar una herramienta potente de análisis de datos como el PCA (Principal Components Analysis).
[Read more…]